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ABSTRACT 

This paper examines the efficiency of an adhesively bonded reinforcement patch in 
reducing the stress concentration around a hole in a plate, as a function of hole size. 
Differential equations are derived for the radial and tangential displacements in the 
plate and reinforcement assuming only in-plane stresses without out-of-plane 
bending. Imposition of angular independence leads to distinct load transfer lengths for 
radial and tangential adhesive shear [ß/1 and /fr1 respectively), and zero tangential 
displacement reduces the problem to a patched circular hole with axi-symmetric 
loading. Four boundary conditions permitted analytic solutions in terms of modified 
Bessel functions. A stress concentration factor (SCF) is defined as the tangential stress 
in the plate at the hole boundary, compared to that far away in the plate but still under 
the reinforcement. Plotting SCF against hole radius normalised by ß,-1, leads to an 
analytic function with a single (non-dimensional) parameter h, depending on the 
thicknesses and moduli of the components. SCF approaches two in the limit of small 
holes indicating that the reinforcement is ineffective in that limit. SCF approaches 1/h 
in the large-hole limit. For the typical repair geometry where fc»l, SCF falls to 1.6 when 
the hole radius reaches ßf1, and 1.3 by 3ßr-

1. The related problem of a circular 
reinforcement bonded on a large (unholed) plate is briefly examined. This indicates 
how the normalisation stress for SCF relates to that applied beyond the patch. 
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Stress Concentration Around a Patched Hole in 
an Axi-Symmetrically Loaded Plate 

Executive Summary 

This paper examines the efficiency of an adhesively bonded reinforcement patch in 
reducing the stress concentration around a hole in a plate, as a function of hole size. 
This problem is of interest particularly in the context of battle damage repair, where 
irregular damage zones are often cut out to a circular shape prior to repair. 

Differential equations are derived for the radial and tangential displacements in the 
plate and reinforcement assuming only in-plane stresses without out-of-plane 
bending. Imposition of angular independence leads to distinct load transfer lengths for 
radial and tangential adhesive shear (ßA and ßg1 respectively), and zero tangential 
displacement reduces the problem to a patched circular hole with axi-symmetric 
loading. Four boundary conditions permitted analytic solutions in terms of modified 
Bessel functions. A stress concentration factor (SCF) is defined as the tangential stress 
in the plate at the hole boundary, compared to that far away in the plate but still under 
the reinforcement. Plotting SCF against hole radius normalised by ß/1, leads to an 
analytic function with a single (non-dimensional) parameter h, depending on the 
thicknesses and moduli of the components. SCF approaches two in the limit of small 
holes indicating that the reinforcement is ineffective in that limit. SCF approaches 1/h 
in the large-hole limit. For the typical repair geometry where /z«l, SCF falls to 1.6 when 
the hole radius reaches ßA, and 1.3 by 3ßf\ The related problem of a circular 
reinforcement bonded on a large (unholed) plate is briefly examined. This indicates 
how the normalisation stress for SCF relates to that applied beyond the patch. 

The analytical formulae derived here provide convenient estimates for design 
purposes. 
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1. Introduction 

A common problem is that of repairing a plate which has a hole in it, either 
deliberately inserted during construction or for internal access, or caused by accident. 
The deliberately inserted holes are often circular. Accidental holes may be irregularly 
shaped and have tears extending from them, but as part of the repair process, the 
damage is frequently cut out in a smooth, approximately circular shape. This removes 
cracks and stress concentrations at sharp corners of the initial damage. The next step is 
to place a reinforcement patch over the damage to exclude the environment, and 
reduce the (tangential hoop) stresses at the hole edges to below a maximum safe level. 
The patch may be rivetted, bolted or adhesively bonded. In this work, it is bonded. A 
thin layer of adhesive, principally through shear, transfers load between the 
reinforcement (patch) and the plate over a characteristic (load transfer) length. If the 
hole is much smaller than this length, then little load can be transferred to the 
reinforcement, and the tangential stress, <yee at the hole boundary approaches twice the 
far field value in the plate under the reinforcement. For uniaxial loading, this factor is 
three times. 
In this work, the situation is idealised as a circular hole in an infinite plate, with 
identical adhesively bonded reinforcement patches on both sides so that bending 
effects can be ignored. In general, the remote loading is biaxial where the orthogonal 
(longitudinal) stresses need not be equal. Any remote shear stresses can be eliminated 
by rotating coordinates. The analysis of this problem is simplified considerably if the 
remote loading is axi-symmetric (independent of angle) and purely radial. This is 
equivalent to equal biaxial loading (fig. 1) wherein aXx=cryy=<7 (=0^), but is not truly 
hydrostatic as there is no stress applied in the third direction: (7^=0. Such axial 
symmetry reduces the problem to one-dimensional in the radial coordinate, and 
eliminates tangential displacements. As indicated later, it is possible to have axial 
symmetry but with non-zero tangential displacements. 

a. a a 

Figure 1. Equivalence of equal biaxial and axi-symmetric radial remote loading. 
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The analysis is taken as far as possible in the general case before several 
approximations including the radial loading, are discussed. The displacements in the 
plate and reinforcement are the functions to be found. Plane stress is assumed in the 
elasticity formulae. This is because the underlying problem is the patching of thin 
plates with no stresses applied normal to the surface: a quasi 2-dimensional problem. 
The physical problem is shown in fig. 2. The plate is assumed very large, and the loads 
applied to its edges. The patch is also assumed large compared to the hole (of radius 
R), so that between the hole and the patch boundary, and far from each (shown 
dotted), there is a region of uniform and equal strain in the plate and reinforcement. 
The notion of "far" in practical terms means at least 3-4 load transfer lengths. 

Figure 2. The problem examined is extracted from a larger physical situation. 

The stress concentration factor (SCF) around the hole is defined as the stress at the 
boundary, <rgf(R) divided by that in the plate under this uniform strain region, ae^w. 
This has an advantage over dividing by the stress in the plate outside the 
reinforcement (a): it eliminates a geometrical dependence in the small hole limit when 
the reinforcement becomes ineffective, and as indicated earlier the SCF approaches 
two. Here, the interest is in how the reinforcement effectiveness depends on hole size. 
In a practical situation, the stress reduction in the plate under the reinforcement (erof-" 
compared to o) would also be important. Further, the modification to the stress 
distribution in the whole structure due the additional stiffness of the reinforcement 
would have to be considered. 

2. Formulation of the equations of equilibrium 

In the plate and reinforcement, only in-plane stresses are considered. The adhesive is 
assumed to transfer load from the plate to the reinforcement through shear only. Peel 
and longitudinal stresses in the adhesive are neglected. The following figure shows the 
coordinate system and the stresses considered in the plate. 
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Figure 3. The infinitesimal element and forces considered. 

From these figures, equations of equilibrium for annular segments of the plate and 
reinforcement, are obtained. The forces are obtained by multiplying the applicable 
stresses by the areas over which they act, and taking into account the components of 
the resulting forces in the directions being considered. To derive these equations, a 
section through the plate and reinforcement (fig. 4) is considered. It demonstrates how 
the adhesive transfers the loads, and the definition of the displacements. 

Ar        ur
R(r+^r) 

< > \ 
n 

\Ur\r) 
Reinforcement 

Adhesive 

ü/\r\    Plate tP 

r r+/\r r 

Figure 4. Section through the problem. The adhesive transfers load to the reinforcement 
through shear. 

The forces exerted on the plate by the adhesive are given by: 

Radial: FA = 2{iAeA x rArA0    . ^        .      .      ^   2e« =("*""')/^ A   A with the strains given by ; .(1) 
Tangential:   Fe

A = 2fiAe£ x rArA0 2eA = [u* -up
g)ltA 

The opposites of these forces are exerted on the reinforcement. 
Considering the radial and tangential equilibrium conditions for the plate and 
reinforcement respectively, noting that rotational equilibrium merely yields Org^cr» in 
both cases, the following equations result. 
Reinforcement: 

Radial: 
d_ 

dr 
■<rl+- 

1 d 

■ ,    1 d   R Tangential:   —— creff + 
r 30 or 

„8   ,  1 / J     „R \_ MA (,.R     ,.P\ 

r lAlR (2a) 

*AIR 
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Plate: 

(2b) 
Radial: ^^^-{^-a^^u«-u?) 

dr r du rv '    tAtp 

Tangentiah   I|^+|^Ä^(%' -yf) 

The stresses above need to be expressed in terms of strains, assuming plane stress 
conditions, and then re-expressed in terms of the displacement functions. These are the 
functions which are then solved for. The equations needed are presented below. 

2.1 Elasticity formulae 

plane stress: 
1 + v 

1-v 

plane strain: 

2/4 + 1=     l 
£ = 2/4} + v) 

arr+agg=2M{2A + l)(err+eee)        2A + \ = 

The following formulae convert stresses to derivatives of displacement: 

3-v 

l+v 

\-2v 

K = 3-4v 

2E  i \ 2crrr=^-^{erT + vege) 

2E  t \ 
2c n^—^{verr+eee) 

2<rre = 2/i2ere 

2.2 General formulae 

e_ = 
dr 
\duB    1 

eM = - + -ur 66    r 36    r  r 

dUf,    1 dur    1 
crfl dr     r 39    r 

(3) 

(4) 

Substituting the above into the equations of equilibrium produces the general 
equations for the displacements in the plate and reinforcement. They are long, and 
only the two for the reinforcement are presented below. The equations for the plate are 
obtained by interchanging "R" and "F", which also takes care of the reversal of the 
force exerted by the adhesive. For the reinforcement, 
Radial: 

21 *   i * Ö     \) I (1"^} ^l* i \{i + V*] f.. i (~3 + Vi,) f. 
dr1    rdr    r2) ee1 

Tangential: 
.        JV     \d     ll    2^' 

u* = ^0z^(M;_M;) 
**/*» (5) 

In these formulae, the arguments of the displacements, (r,9), have been omitted for 
clarity. 
A number of different (restrictive) assumptions facilitate solution of these equations 
under special circumstances. 
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3. Simplified cases 

3.1 Single plate assumption 

As a check on the above derivation, setting the adhesive force term (RHS) to zero, and 
then only taking the equations for the plate, gives the equations for the plate with a 
hole problem. Although already solved (appendix 1), this problem serves to illustrate 
the method of solving other problems reduced from the general case. It is also relevant 
for the region of the reinforcement over the hole in the plate. The full solution is split 
into angularly independent and angularly dependent parts. 

Angularly independent solution 
Firstly, if a solution independent of angle is assumed, then the replacements 
gi fig _> o and dl dr ->• d / dr can be made. This case may represent an annulus with 
distributed radial and tangential stresses applied on the inner and outer edges. In that 
case, both the radial and tangential equations reduce to: 

'd2      Id      1 
+ - — —^\h(r) = 0, (6) 

l^dr2     r dr    r2. 
where h{r)=udf) or ur(r). If the solution is a power series in r, there is no mixing of 
terms with different powers, so the solution can be taken as a single term: h(r)=Bmrm 

and allowable values determined for m. This results in (m2-l)Bm=0. Thus m=±l, 
h(r)=B.i/r+Bir, and B-i and Bi will be chosen to match the boundary conditions. 

Angularly dependent solution 
Introducing   angular   dependence,   the   radial   and   tangential   equations   above 
respectively combine 

1   (<?Y      1 <?V    \  (d\ äie 1   (d\k      1 &u0    1  (d\ dUr and 
r2-k\dr)    r'r2 Ö62 'r2-'Kch)  39 r^Kdr)    e'r2 d62 ' r2-l\dr)  39 

Here k can be 0,1,2 and I 0,1, but all terms end up of order r2 times their original power 
of r. Assuming the problem will be symmetric about the (suitably chosen) x and y axes, 
anticipating unequal perpendicularly applied uniaxial stresses parallel to the axes, 
then the solution must be of the form: 
ur(r,e) = f(r)cos(2nd) 

ue(r,0) = g(r)sm(2nd)' 
n being an integer equal to 1 for the above anticipated loading case. 
Once again, the radial parts of each function can be taken as single terms (of the same 
power, m) in power series expansions: jij^CmT" and g(r)=Dmrm. These forms result in 

d      m   d2       m(m-\)   d2 ,,„,...        , ,. , 
the replacements > — ,—7-» z ,—--»-4. Substitution into the radial 

F dr      r  dr2 r2       dO2 

and tangential equations, with these replacements, results in a pair of simultaneous 
equations for the coefficients Cm and Dm: 



DSTO-RR-0132 

m + 2v-3 

-2m(l+v) + 2v-6 

m(l + v) + v - 3 

m2(l-v) + v-9 D. 
(8) 

A non-trivial solution (Cm and Dm non-zero) requires the determinant to be zero: 
(l-v)(m2-l)(m2-9)=0. For each allowed value of m, a relationship then exists between C„ 
and Dm as indicated in the following table. The known values are for the biaxially 
loaded plate case shown in Appendix A. 

Table 1. Relationships between coefficients, and values for the hole in a plate problem. 

Value for m Relationship Known Cm Known Dm 

-1 D.!=-(MCi/2 R2(K+l)/2 R2(-K+l)/2 

1 Di=-Ci 1/2 -1/2 

-3 D-3=C3 -R*/2 -R*/2 

3 D3=-(3+v)C3/(2v) 0 0 

3.2 Equal Poisson's Ratios 

This simplification is valid when the reinforcement is of the same material as the plate 
(same modulus as well), and may also be a good approximation if the two Poisson's 
ratios are similar Indeed, for the representative bonded composite repair the Poisson's 
ratios are similar: 0.33 for aluminium and 0.30 for the reinforcement (Appendix 3). This 
simplification enables subtraction of the two radial and tangential equations 
respectively, to give equations for the relative displacements of the plate and 
reinforcement. Making the identifications Awr = w* -up

r and tAua =ul-up
a , the 

resulting equations are: 
Radial: 

# \d n,(i-v)<? 
"     r1)       r1    c& 

e ' 

a-2    rdr 
Tangential: 

Au. + 
(1 + v)  d1 

drdO 

(-3+v) d' 
r1     d9 

A«, 
>*M,    hfr 

' ,     J&     1 d     11    2  & Au; 
(l + v)  &      (3-v) d 

Au, 

Au. 
(9) 

r    6rd6      r1    36 

This case was not pursued any further: after solving the above coupled equations for 
the relative displacements Aur and Aug, these solutions would be substituted back and 
the equations (5) solved for the actual displacements. 
3.3 Angularly independent assumption 

It is important to point out that there is a difference between assuming angular 
independence and zero angular displacement. The former allows both radial and 
tangential displacement as long as neither depends on the angle. In this case, the 
remote loadings on the plate and reinforcement, and on the surface of the hole in the 
plate, are independent of angle. They may be equal perpendicular remote uniaxial 
loads ("hydrostatic" loading oi/^cry/0 but oi^O), coupled with a pressure on the 
surface of the hole in the plate. Another situation could be different tangential loads 
applied to the hole surface and plate and reinforcement far from the hole, in a twisting 
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mode. The only requirement is that the loading be independent of angle. The more 
restrictive zero angular displacement situation limits all forces to the radial direction. 
Under the angular independence assumption,   dldO^tO  and   dldr-^dldr as 
indicated earlier for the single plate case. This greatly simplifies the equations to be 
solved as shown. 

Radial: Reinforcement:   2 

Plate: 

d2     1 d — +  
dr     r dr 

Tangential:   Reinforcement: 

d^ 

dr2 

d2 

1 d 
+  

r dr 

r2J 

r2j 

u" = » 
l A 

u:=-^gp{u«-u:) 

Plate: 

1 d — +  
dr     r dr 

d2     1 d 
—7 + - 
dr      r dr 

u« = MA     
l 

*A  'RMR 

-(Ug-Ug) (10) 

1 
--T \U0   = — 

*A    hMl 
{u*-up

e) 

where   gR = (l-v.)    2il-<) and 
(l-vP)    2(l-^f) 

hMp ERtR P        fpMp EPtP 
Subtracting the second radial equation from the first produces a single equation for the 
relative displacement, defined as for the equal Poisson's ratio case. This can also be 
done for the two tangential equations. 

Radial: 

Tangential: 

^d2     Id     1 ,.        _,. 
—+ -- -\Aur=ßrAur 
dr     r dr    r 

ß>^(g^§p) 
LlA 

dr2 

1 d 
+  

r dr 
2.^ 
r2j 

Aue = ß2
0Aue    ß] EL 

t 

f 1 1 
(ll) 

VRMR    hMpJ 
These equations have the same form, and after substituting s=ßrr or s=ßer, are identical 
to the modified Bessel equation (described in appendix 2) with order n=l. Different 
boundary conditions will lead to differences in their complete solutions. 
The focus now will be on the radial displacements rather than tangential. The remote 
loading will be assumed purely radial in nature and the tangential displacements 
therefore Au^r)=0. In this case, the solution for the relative radial displacement is 
Aw(r) = AIX (s) + BKX (s) with s = ßrr. The solution must not diverge faster than O(s) 
as s-»oo, therefore A=0. 
Returning to the equations (10) for the radial displacements for the plate and 
reinforcement, they become 
Reinforcement: 
f 1 d     1 

\ds     s ds    ~ 
Plate: 

YR = 

i2     1 d +  
yds     s ds s2j 

u*{s) = -YpBK,(s) 

MA 1 

2tA ßl 

MA 1 

SR 
gR 

gR+gp (12) 

2tAß
2

r 
gp=- 

gf 

gp+gp 
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Focussing on the reinforcement equation, it will have complementary and particular 
solutions. The complementary solution is obtained on setting B=0. This was solved 
earlier for the single plate problem, and results in u?Comp(s) = C?s+ C* / s with the 
arbitrary constants GR and GiR to be determined by the boundary conditions. 
The particular solution may be defined as UrR-Part(s)=^BP(s).This results in the modified 
Bessel equation of order n=l and thus P(s)=JG(s). Similar reasoning applies for the 
plate equation. Outside the hole (r>R, scaled radius s>SR=frR), the overall solution is 
then: 
«r

Ä(s>sR) = C?s+ C* ls + yRBKx(s) 

u?(s>sK) = C?s+C?Js-rPBK](s)' 
Inside the hole, the reinforcement has the same equation and general form solution as 
the single plate as there is no adhesive force there. That is 

(d2     Id     l) *._, ,   n 

U7+7dW> (5) = 0. (i4) 
u?-(s<sR) = D?s + D'!i/s 
As the solution must be regular at the origin, D-iR=0. 
3.4 Boundary conditions 

There are four boundary conditions, used to determine the four non-zero arbitrary 
constants B, CiR, GR and D.iR . These are summarised below and then each interpreted 
in terms of the arbitrary constants. 
Continuity of displacements:   u * (s^s~) = « * (s ->• s*R) 

Continuity of radial stress:       cr^is -» s~) = 0% (s-^s*) 

Stress free hole surface: <r£ (5 ->• s*) -» 0 (15) 
f<r*(5->oo)->a*-- 

Far field radial loading: < Pao 
[<7^(5-> 00)-><7^" 

There is also a relationship between the far field loading stresses on the plate and 
reinforcement, necessitated by the earlier solution where Au^>0 as S-K». 
The first boundary condition gives the first equation relating the arbitrary constants: 
D?sR = C?sR + C* lsR+yRBKx (sR). (16) 
The other three boundary conditions require relationships for stresses in terms of the 
displacements. From the elasticity equations (4) presented earlier, and assuming 
djd0-*§, for both the plate and reinforcement (dropping the distinguishing "R" or "P" 
labels), 
„     , x    2 x 2uf d     v)    . .      4//     (d     v\ ^^'^v^-y^'—A^'s)^ (17) 

The second and third boundary conditions then become, after using the Bessel 
function relationships in appendix 2 to evaluate the derivatives, 
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R 

o=c?(i+vP)+c«lt±^--rPB 

s 
R 

(18a) 

Turning to the fourth boundary condition, that relating to the far field loading, then in 
the limiting case as r-»<x>, or in scaled form s-»°o, the equations become 

(18b) 

2aUs-^oo)^^ßr(l+vP)Cl
R+0(l/s2)^2a:r 

i   vp 

These two equations give GR directly, as well as the relationship between the far field 
load on the plate and reinforcement needed to give 4M,-(S->OO)-»0. This relationship is 

best expressed as 

a*'n = 
1 + v, 1-v, 

a~   ~EP(l-vRf" 
(19) 

Kl-vRAl + vpJ fip 

The shear moduli have been expressed in terms of the (more commonly presented) 
Young's moduli in this equation. The ratio of tangential (hoop) stress at the hole 
surface to that far away in the plate, later referred to as the stress concentration factor 
SCF=a0(F(r=:R)/ ereff'°°, is of interest. Note that G6^

a,=Grr?-x as the loading is axi- 
symmetric. 
3.5 Solving for the arbitrary constants 

In order to examine the weak/thick (/?r-»0) and stiff/thin (ßr+&>) adhesive limits, the 
equations for the constants (16 and 18) must be rewritten by scaling the constants. The 
resulting matrix equation is: 

■ißtf) 

-1 ¥ 
_i   l ("1+v* 

R2K l + v„ 

r*fi 

YRP; 

aUsR) 

1 + v, 
-K0(sR)J  1 + VVU(**) 

R 

° IHT^I -■* 1 + v p' 

-K0(sR) +tlixA Kt(sR) 

ßr       ' 

(20) 

This set of equations simplifies in the small and large ßr limits, but can be solved 
directly before the limits are taken. Doing so leads to 
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fil -2Jg2(l + v,)  (äC*) 

{ßA*) = - 

(21) 

2Ä2(l + v,) 
25

2
B^0(5ä) + 2(1-V/,)5^1(5ä) 

Hä 
5 

These expressions now give the displacement functions analytically (equations 14 and 
13), and from those, the radial and tangential stress fields can be obtained using 
equations (17). 
The quantity of interest is the stress concentration factor SCF defined above. It requires 
the tangential stress in the plate. From equation (17), 

Substituting in the above expressions for the constants and S=SR at the hole surface, this 
simplifies down to 

<T'e.M = <tfxSCF     where     SCF-****^      and 

=. ,   N    sRK0(sR) .t.       ,    2-(l + vp)rK FAsB)= with     h = -. \— 
KKM)

     *,(*.) 2(1-v,) 
Here SCF is the stress concentration factor, which equals 2 for an unreinforced hole in 
an axi-symmetrically loaded plate, and 3 (Timoshenko[2]) if loaded uniaxially. The 
above expression is useful as all the geometric parameters concerning the components' 
thicknesses and moduli are included in the single parameter h. The hole radius enters 
in the scaled form SR=ßR. Parameters for a typical composite bonded repair of an 
aluminium plate are presented in appendix C. The behaviour of SCF with varying hole 
size for the typical reinforcement configuration, and where the reinforcement is the 
same aluminium as the plate, is shown below. 

10 
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Stress concentration at hole 

0 8       R (mm)     12 

Figure 5. Stress concentration factor as a function of hole size for a representative geometry. 

In normalised form, SCF against SR for several values of h, is shown below. 

SCF against sR 

ü 
co 2 - 

1.8 - 
1.6 - 
1.4 - * "■■»»                           """ **•» —. 

1.2 - h=0.8 
 h=1 

.   .   h=1.2 
1 - 

0.8 - 1 r    -                               i 

0 SR 

Figure 6. Stress concentration factor against hole size normalised by load transfer length. 

3.6 Limiting values 

The weak/thick and stiff/thin adhesive limiting values for SCF are useful because, 
with this work focussed on the effect of hole size, these limits are also the small and 
large hole limits respectively. 
The limiting values are obtained from the Bessel function limiting expressions 
(appendix B) as: 
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Weak adhesive, small hole: 

sR=ßrR-+0 

Strong adhesive, large hole: 

= ßrR •00 

FA
S

R - 
SCF(sR 

FA
S

R ~ 

SCF(sR 

0)^-(sl)[r +HsR /2)] + 0(s*R)ln(sR 12) 
-> 0) -► 2 - (1 + 2h){sR )[y + \n(sR 12)] + 0{sR) 
>ao)^sR-\/2 + 0(\/sR) (24) 

•oo)-»l/A + 
2h-\ 

\s„) 
+ 0 

1 
„2 

\5R 

An interesting fact is that if the plate and reinforcement are identical (yR=yp=l/2), then 
the expression for h becomes /z=(3-vt>)/(4-4v>>). Poisson's ratio is usually close to 1/3, 
and if exactly that value, then /i=l precisely, and the large hole limit has SCF->1. 

4. Plate with a finite reinforcement patch (no hole) 

In the above derivations, the reinforcement was assumed infinitely large so that edge 
effects could be ignored and the "far field" remote loading produced a uniform radial 
strain. Here a finite circular reinforcement on an axi-symmetrically loaded plate is 
examined (fig. 7). 

Figure 7 Finite reinforcement bonded on a large plate. 
As before, the remote loading will be purely radial with zero tangential displacements. 
The solution for the relative radial displacement between the plate and reinforcement 
is: Au(r) = AIX (s) + BKt (s) with s = ßrr. This time, the solution must not diverge as 
s->0, therefore B=0. The equations for the radial displacements for the plate and 
reinforcement (equation 12), remain as before except that BKX (s) is replaced by AI} (s). 

The complementary solution is the same: u?Comp(s) = Efs + E^ /s with the arbitrary 
constants renamed EiR and E-iR to distinguish them from the earlier constants. The 
particular solution may be defined as UrRPart(s)=^AP(s).This results in the modified 
Bessel equation of order n=l and thus P(s)=h(s). Similar reasoning applies for the plate 

12 



DSTO-RR-0132 

equation. Given that Ii(s-»0)-»0, E-iR must be zero as the displacements vanish at the 
centre. Inside the reinforcement radius {r<R'f scaled radius s<sR'=ßrR'), the overall 
solution is then: 

uR
r (s <sK,) = E?s + yRAIx(s) 

up(s<sR,) = El
Rs-yPAIl(s)' 

Outside the reinforcement, the plate satisfies the single plate equation (14) with 
general form solution: 
up'+(s>sR,) = Fps + Fp/s. (26) 
In this case, both terms are valid and hence retained. 
4.1 Boundary conditions 

There are four boundary conditions, used to determine the four non-zero arbitrary 
constants A, E-iR, Fip and F-ip . These are summarised below and then each interpreted 
in terms of the arbitrary constants. 
Continuity of plate displacements:       up(s -> s+

R.) = up(s -» s~) 

Continuity of radial plate stress: ap
r (s -*sR,) = ap„ (s-+sR.) 

Stress free reinforcement outer edge:   aR
rr (s -» sR.) -» 0 

Far field plate loading: ap
r (s -> °o) -» <r 

The first boundary condition gives the first equation relating the arbitrary constants: 

Ffsr + Fp I sR, = E?sR, -yPAIx(sR.) . (28a) 
The second and third boundary conditions then become 

0 = El
R(\ + vP) + yRA 

Fir(l + Vp) + Fpt±^Ä = El«(l + vp)-ypA hM -^Ar M 
(28b) 

The fourth (far field) boundary condition, may be simplified as s-»oo by neglecting the 
FA

P
 term: 

1    v p 

4.2 Solving for the arbitrary constants 

(28c) 

Putting together the above equations, noting that the last gives Fip explicitly, the 
resulting matrix equation is: 

(W) 
0 

1 "IF 
-1   0 

-rPß2r 

yRßl 
1 

1 + v \J 

1    l-v„ 
R'2U+vt 

r^f-^-|/0(5,)-^-^/,(^) 

ßß? 

±F: 
Kßr 
ri; 

(29) 
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The solution, for all four constants, is 

(Afl')- <J = 
2^(1+ v,) 2£ 

_1_   "I -2/?'2(1 + ^)  

ßr )   [rp(i+^)+2rÄ]4^o(^)-2(i-vÄ)rÄV,(^) (^') 

(j-*') = Y^MSR)~2SRMSR^ ijr
A, 

(30) 

^/>    ,2 
,,2 ■>Ä-,0VoÄ' -5L/0(S„.)   — .4 

2/?„    R R /^ 
1 

These expressions again give the displacement functions analytically (equations 25 and 
26), and hence the radial and tangential stress fields. The stresses in the reinforcement 
and plate under the reinforcement are of interest, particularly far from the edge of the 
reinforcement and in the limit of a large reinforcement relative to the transfer length 
(SR,_>.OO). Evaluation of this limit requires the large argument limits for the Bessel 
functions Jo, and h, equations 44. In this SR-KO limit, the parameters become 

A = 

F: = 
-yPs1

R{\+vRjsR.-
xi)F,p -,,(1+vRyR,Ff 

E? = F;- 

^,(l+^) + 2rÄ] + I[l + vÄ-15rÄ(l-vÄ)]      rP{\ + v„) + 2rR 

rP{\+yR){sR.+^Fl
p _     2rKFl

p 

(31) 

sR\rP{^yR)+2rR]+i[i+yR-\5rR(\-vR)]   ^(i + v^+2^ 
In terms of the remote applied stress a the stresses in the plate outside the 
reinforcement are 

^(s>sK.)^l 
V 

\r\ FPl~2 

vPoe(s>sR,)^u(\-vPVF_pA 1 

a {l + vpAFp)s2 

(32) 

Note that for the representative reinforcement parameters of appendix C, F.\p is 
negative. Inside R', the stresses are as follows. 
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crpn(s<sK.)_E?        yPA 

^9e(s<sR,) _E( 

(l + vjF/ 

YpA 

IM- 
\-vt 

Fx
p    (l + vP)Fp 

vpI0(s) + 

s 

1-v, 

■/,(*) 

■w 

—^~ = ^(l-vt)(l+v,)tF1'
+(l + vt)F1'L

/o(*)       *    /,U. 
(33) 

°tiß<Sr) _/*Al + v*)(l-vr)\tf  |        M VÄ/0(5)+ *-/,(*) 

The values of these stresses as s-»0 (centre of the reinforcement) are of interest. In the 
first two equations, the terms in square brackets (see equation 42) approach (1+ vp)/2, 
and the two stresses crj and aef become equal. Similarly the stresses in the 
reinforcement also become equal. Hence 

^(5^0)   , <r£(5-»0)   >1E?-_r*A \ Ojz)1 
->• 

G IF 
(34) 

—^    "   ^    "^7(i--Ä)(i+^)t IF: J  () 

Once again the large reinforcement limit is of interest as it represents the assumption 
made for the patched hole case examined earlier. In this case, the A terms vanish and 
the stress in the plate under the reinforcement becomes 

o£(*->0) E? 2rR (35) 

This equation relates the loading assumed for the hole case (and thus the stress value 
arr

p'co of equations 15 and 19 used to normalise the stresses) to that in the plate beyond 
the reinforcement. 
The displacements and stresses (latter normalised by the remote applied load o) are 
plotted below for the representative bonded reinforcement. 
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Figure 8 Plots of (a) the displacements and (b) stresses (normalised by the applied stress a) for 
a circular reinforcement bonded onto a large plate. 

5. Conclusions 

The (two dimensional) equations for stresses and displacements for an infinite plate 
with a circular hole and (infinite) bonded reinforcement, are solved analytically for the 
case of axi-symmetric loading of the plate and reinforcement with vanishing adhesive 
shear stress at infinity. The conjugate problem of a finite circular reinforcement bonded 
on an infinite plate is also solved. It is useful in relating the stress in the plate under the 
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reinforcement in the first problem to the load applied beyond the reinforcement for a 
finite reinforcement over a hole. In solving these problems, two load transfer lengths 
are identified: one associated with radial displacements (ßf1) and the other tangential 
(ßeA). The earlier solution leads to an analytical formula for the stress concentration 
factor (SCF): the ratio of the hoop stress at the surface of the hole relative to the far 
field plate loading. This formula incorporates all the geometrical parameters in a single 
non-dimensional parameter h. For a typical repair geometry, fc»l. The SCF is two in the 
absence of a reinforcement and in the limit of a small lole, but decreases as the hole 
size becomes a significant fraction of the load transfer length, approaching 1/h in the 
large hole limit. For a typical repair geometry, SCF has fallen to 1.6 by the time the hole 
size is equal to ßA and 1.3 by 3ß/1 
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1. Appendix A: Known solutions for biaxially loaded 
(single) plate with a hole. 

The solution for an infinitely large plate remotely loaded with unequal perpendicular 
uniaxial stresses and a hole of radius R, is known (Timoshenko[2], Muskhelishvili[4], 
List[l]) analytically. 

)xx 

i r 
Figure 9 Biaxially loaded (unpatched) plate with a circular hole. 

The radial and tangential equilibrium equations (reduced from equations 5) couple the 
radial (ur) and tangential (ue) displacements: 

Radial: 
id   0 
r or    r ) +<! -v) d2' 

r2   de2 "r + 
"(1 + v)  d2    { (-3 + v) d' 

r     drde '      r2      de 
ue=0 

Tangential: 

(1-vJ (d
2     Id 

,dr2 + rdr~ ~r2\ 
2  d2 

+ r2de2 ue + 
"(1 + v)  d2   ] (3-v) d' 

r     drde '     r2     de 
ur=0 

(36) 

Using the functional forms of this paper, the solution separates into angularly 
independent and angularly dependent parts. With the boundary conditions of a 
(radial) stress free hole surface, and far field loading as described, the solution is: 

ur (r, 6) = h(r) + f (r)cos(20) h(r) = -*- 
2/i 

ue{r,e) = g(r)sm(2ß) 

rR2}\    (K-\ 

v2y 

2n 

&) = $- 

r+{~ 4 

(R2(K+\))I_(\) JRA ) 1 

J 
(R2{-K + X)\\    (\ 

vVr~ 

2 jr3 

] 

2 J? 

.(37) 

'/?M 1 
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The stresses and K value (for plane stress) are given by: 
00  00 

— (J xx yy 

2(1-v) 
Vh   = <7xx+(Tyy <Trf   = Gxx ~ °yy <7°°   =0 

£> 
3-v 

*-i = K + l 
(38) 

1 + v 1 + v 1 + v 

2. Appendix B: Modified Bessel Functions 

The following information, from Abramowitz  and Stegun  [3],  is  provided for 
completeness. 
2.1 Modified Bessel Equation: 

(39) 
f£*+s*f-(s>+„>)F(s) = 0,   or 

ds        as    v ' 

d2     1 d     n2\ „..     „, . 

The solutions are I^(s) (regular as s->0) and Kn{s) (regular as s-»°o). If n is an integer, 
then In and L„ are not linearly independent. 

Recurrence relations if F„(s)=J„(s) or exp(m;z)Kn(s) (=(-l)»K„(s) for n integral): 

dF „   , ,    n „, .    dF„ 
^V, W + ^+, (*) = 2 ^ ^+1 (*) + ~ F„ (s) = -£ 

2.2 Series solutions for small arguments: 

1 

(40) 

W-JI 
VN* 

2^ SUJ   Jfc!r(n + * + l) 
for integral n, Y(n +1) = n! 

^^Y(»-*-.)!+(.ir,j£|/_(j) + 
it! (41) 

■ r n.irjTffj2V^i,+*+i)+y^+i) 

^(»)—r+Z(£). withVI/(1) = -?' = ii 1     1 l     w   ^ 1 + -+...+ ln(ra) 
2 w 

= -0.57721 56649 
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Particular series needed here are: 

s 
/„(') = ! + 

.2^    j 
- + "Y VIV 4j(l!)2    U;  (2!) 

«'Hi 

K0(s) = - 

*,(*) = - + 
5 

1
 
+

 
I
TJHTJ   24 

+
 ITJ3!4! 

(3!)2 

1 

r + 4i 
+4i 

7^)+IT)öV+ vy (1+1/2) rf2V0+1/2+1/3) i 

,4j     (2!)2    +UJ (3!)2 

(42) 

'.(*)-7 
sM5/2 

-'TJ^HT) 
10/3   (s2Y 47/12 

+ — 
2!3!    V4J    3!4! 

■+.. 

2.3 Series expansions for large arguments: 

exp(s) 
'.(') = 

^-1,(^-1X^-9)    (fi- 1X^-9X^-25), 
85 2!(8s)2 3!(8s)3 

'     „-1    (//-IX//-9)    (^-lX//-9X//-25)     ' 
1 + ~ +      2!(85)2 3!(85)3 85 

// = 4n2 

The particular series needed in this work are: 

exp(s) 
2ns 

exp(s) 

i+±+ • + ■ 
75       75x49 

85   2(8s)2    2(85)      8(85) 

15 105      105x45 ,_2. 
Ss   2(85)     2(Ss)      8(85) 

•+. 

K0(s) = J—exp(-s) 1 + 
75       75x49 

• + ■ 
Ss    2(85)     2(8s)      8(85) 

*,(*) = J—exp(-s) 1 +  
15 105      105x45 

85    2(85)     2(8s)3      8(85) 

(43) 

(44) 
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2.4 Function plots 

0 1 
Figure 10 Plot of the low order modified Bessel functions. Note that h and h are finite for s-^0 
while Ko and Ki ->Oass->co. 

2.5 Polynomial representations 

There are polynomial representations for these functions, together with their accuracy. 
These expressions were used in calculation when the argument precluded use of the 
above large or small argument approximations. In all of the following series, the 
expansion of the indicated function is Co + C\ t + Gi t2 + C3 t3 + ... 

Table 2 Coefficients in polynomial approximations to the modified Bessel functions h and h. 

Function Io(s) •y£ exp(-s)Jo(s) s-ili(s) 1^ exp(-s)Ji(s) 

Applicable domain s<3.75 s>3.75 s<3.75 s>3.75 

Expansion variable t Hs/3.75)2 t=3.75/s f=(s/3.75)2 t=3.75/s 

Co 1.0000000 0.39894228 0.50000000 0.39894228 

Ci 3.5156229 0.01328592 0.87890594 -0.03988024 

c2 3.0899424 0.00225319 0.51498869 -0.00362018 

c3 1.2067492 -0.00157565 0.15084934 0.00163801 

c4 0.2659732 0.00916281 0.02658733 -0.01031555 

c5 0.0360768 -0.02057706 0.00301532 0.02282967 

C6 0.0045813 0.02635537 0.00032411 -0.02895312 

c7 -0.01647633 0.01787654 

Cs 0.00392377 -0.00420059 

maximum | error | 1.6x10-7 1.9xl0-7 8xl0-9 2.2xl0-7 1 
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Table 3 Coefficients in polynomial approximations to the modified Bessel functions Ko and Kj. 

Function Ko(s) \£ exp(s)Ko(s) sKi(s) >£ exp(s)Ki(s) 

Applicable domain s<2 s>2 s<2 s>2 

Expansion variable t t=(s/2)2 f=2/s r=(s/2)2 t=2/s 

Added function -ln(s/2) Io(s) sln(s/2) Ii(s) 

Co -0.57721566 1.25331414 1.00000000 1.25331414 

G 0.42278420 -0.07832358 0.15443144 0.23498619 

c2 0.23069756 0.02189568 -0.67278579 -0.03655620 

c3 0.03488590 -0.01062446 -0.18156897 0.01504268 

a 0.00262698 0.00587872 -0.01919402 -0.00780353 

c5 0.00010750 -0.00251540 -0.00110404 0.00325614 

c6 0.00000740 0.00053208 -0.00004686 -0.00068245 

maximum | error | lxl(H 1.9xl0-7 8xl0-9 2.2xl0-7 

3. Appendix 3: Parameters for a typical bonded 
composite reinforcement of an aluminium panel 

3.1 Input geometrical parameters 

Table 4 Geometric parameters for a typical bonded reinforcement repair. 

Parameter Symbol (Unit) Plate (P) 
(Aluminium) 

Adhesive (A) 
(FM 73) 

Reinforcement (R) 
(10 ply boron) 

Young's modulus E (GPa) 72.4 1.89 207 

Shear modulus /i(GPa) 27.22 0.70 79.62 

Poisson's ratio V 0.33 0.35 0.30 

Thickness t (mm) 3.10 0.10 1.27 

3.2 Calculated and other input parameters 

Table 5 Other parameters and those derived from the above. 

Parameter Unit Formula Values 

Or?" MPa Remote plate stress 100 

Orr*" MPa (l-v/l 
ll-vj f!

+"'}"•<' 273.7 

r _lim 
m—►oo 

1+ -+...+ ln(m) 
2        m            J 

0.577216 

gR l/(mmMPa) (l-vR)/(tRMR)=2(l-VR2)/(tRER) 0.006923 

gp l/(mmMPa) (l-vp)/(tpMp)=2(l-v^)/(tPEp) 0.007941 

YR gR/(XR+gp) 0.4658 

yp gp/{gR+gp) 0.5342 
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ßr2 l/(mm)2 {MA/tA)x(XR+gp) 0.05202 

ßt l/(mm)2 2{MA/tA)x(l/tRMR+l/tpMp) 0.15219 

ßr l/(mm) Wr 
0.2281 

ße l/(mm) M 0.3901 

ßrA mm Vßr 4.3843 

h 2-(l+vP)yR 

2{l-vP) 

1.0302 

3.3 Calculations of SCF at two hole radii 

Table 6 Parameters in the calculation of the stress concentration factor for the typical bonded 
repair and hole radii of lmm and 10mm. 

Parameter Formula R=lmm R=10mm 

SR ßrR 0.2281 2.2809 

Ko (SR) Bessel function 1.6278 0.08098 

KI(SR) Bessel function 4.1434 0.09732 

FK(SR) SR KO (SR)/KI(SR) 0.08961 1.8979 

SCF(SR) 2 + FK(sR) 

l + hFK(sR) 

1.9130 1.3189 

3.4 Standard and normalised constants for the displacement formulae 

Equations 13 and 14: 
u?(s>sR) = C?S+C*JS + YRBKX(S) 

"' {S>SR) = Cfs +CR_Js-yPBKX(s)' 

uft-(s<sR) = Dfs 

Table 7 Parameters calculated for the displacement functions reproduced above. 

Constant R=lmm R= 0mm 

Standard Normalised Standard Normalised Standard Normalised 

G* AG* 4.0573 0.9254 4.0573 0.9254 

Ci* CiVA 0.1867 0.8184 12.87 56.426 

DiR ßrDl* 4.2112 0.9605 5.2619 1.2002 

B B/ßr -0.4059 -1.7795 -63.872 -280.03 
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displacement reduces the problem to a patched circular hole with axi-symmetric loading. Four boundary conditions permitted 
analytic solutions in terms of modified Bessel functions. A stress concentration factor (SCF) is defined as the tangential stress in 
the plate at the hole boundary, compared to that far away in the plate but still under the reinforcement. Plotting SCF against 
hole radius normalised by ß-\ leads to an analytic function with a single (non-dimensional) parameter h, depending on the 
thicknesses and moduli of the components. SCF approaches two in the limit of small holes indicating that the reinforcement is 
ineffective in that limit. SCF approaches 1/h in the large-hole limit. For the typical repair geometry where fc»l, SCF falls to 1.6 

when the hole radius reaches ßr
A, and 1.3 by 3/&-1. The related problem of a circular reinforcement bonded on a large (unholed) 

plate is briefly examined. This indicates how the normalisation stress for SCF relates to that applied beyond the patch. 
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